Initializing MathJax...
Initializing MathJax...
Initializing MathJax...
Initializing MathJax...
Initializing MathJax...
Initializing MathJax...
Initializing MathJax...
Initializing MathJax...
Initializing MathJax...
Initializing MathJax...
Initializing MathJax...
Initializing MathJax...
Initializing MathJax...
Initializing MathJax...
Initializing MathJax...
Initializing MathJax...
Initializing MathJax...
Initializing MathJax...
Initializing MathJax...
Initializing MathJax...
Initializing MathJax...
Initializing MathJax...
Initializing MathJax...
Initializing MathJax...
Initializing MathJax...
设
Initializing MathJax...
Initializing MathJax...
Initializing MathJax...
Initializing MathJax...
Initializing MathJax...
(1) 设当
Initializing MathJax...
Initializing MathJax...
Initializing MathJax...
Initializing MathJax...
替换要求:乘除因子可替换,加减、指底数等其他因子一律不替换。
(2) 常用等价无穷小:★★★
Initializing MathJax...
Initializing MathJax...
Initializing MathJax...
Initializing MathJax...
Initializing MathJax...
Initializing MathJax...
Initializing MathJax...
广义化也成立。
主要处理
这样的极限 和积分配合,有积分符号,优先想洛必达。Initializing MathJax...
Initializing MathJax...
Initializing MathJax...
Initializing MathJax...
Initializing MathJax...
Initializing MathJax...
Initializing MathJax...
Initializing MathJax...
Initializing MathJax...
Initializing MathJax...
Initializing MathJax...
对数恒等式
=Initializing MathJax...
=Initializing MathJax...
Initializing MathJax...
Initializing MathJax...
Initializing MathJax...
Initializing MathJax...
数列极限只是函数极限的一种特殊形式,函数极限成立,可以推出数列极限成立,反之不一定成立
一般很多项(无限多项)分式,不好通分的时候,使用夹逼准则
单调的有界的数列必有极限, 即若数列
Initializing MathJax...
Initializing MathJax...
判断数列的有界性:
判断数列的单调性:
函数和极限的相互转化条件
Initializing MathJax...
Initializing MathJax...
Initializing MathJax...
Initializing MathJax...
Initializing MathJax...
Initializing MathJax...
Initializing MathJax...
Initializing MathJax...
Initializing MathJax...
Initializing MathJax...
Initializing MathJax...
Initializing MathJax...
Initializing MathJax...
Initializing MathJax...
Initializing MathJax...
Initializing MathJax...
Initializing MathJax...
Initializing MathJax...
Initializing MathJax...
Initializing MathJax...
Initializing MathJax...
Initializing MathJax...
Initializing MathJax...
Initializing MathJax...
Initializing MathJax...
Initializing MathJax...
Initializing MathJax...
Initializing MathJax...
Initializing MathJax...
Initializing MathJax...
Initializing MathJax...
Initializing MathJax...
Initializing MathJax...
Initializing MathJax...
初等函数:非分段函数 可疑间断点:分段点、不在定义域内
Initializing MathJax...
Initializing MathJax...
Initializing MathJax...
Initializing MathJax...
Initializing MathJax...
Initializing MathJax...
Initializing MathJax...
Initializing MathJax...
Initializing MathJax...
Initializing MathJax...
Initializing MathJax...
Initializing MathJax...
Initializing MathJax...
Initializing MathJax...
Initializing MathJax...
Initializing MathJax...
Initializing MathJax...
Initializing MathJax...
Initializing MathJax...
Initializing MathJax...
连续+连续=连续
; 连续×连续=连续
;Initializing MathJax...
Initializing MathJax...
Initializing MathJax...
Initializing MathJax...
Initializing MathJax...
Initializing MathJax...
Initializing MathJax...
Initializing MathJax...
连续+间断=间断
;连续×间断=间断
(当 Initializing MathJax...
不确定
(当 Initializing MathJax...
Initializing MathJax...
Initializing MathJax...
Initializing MathJax...
Initializing MathJax...
Initializing MathJax...
Initializing MathJax...
间断+间断=不确定
; 间断×间断=不确定
;